SIEM vs EDR: Which Security Solution is Best?

SIEM technology has existed since 2000, so it’s hardly new.

A Security Operations Center (SOC) can now provide 24/7/365 monitoring and logging of security event alerts thanks to this essential instrument, which has evolved over time.

Security teams may better concentrate on locating, evaluating, and reacting to the threats and other warnings that are most important with the aid of SIEM. It is now simpler for technology service providers (TSPs) to offer their clients SIEM functionalities, such as visibility, thanks to next-generation, cloud-based SIEMs.

Modern SIEM solutions provide for complete access to inspect your alarm data when working with a SOC. Also, your team  can collaborate directly with the SOC professionals to swiftly identify and resolve key issues.

What is SIEM technology and how would you use it?

An organization’s network devices, systems, applications, and services produce log and event data, which is collected by a security information and event management (SIEM) system. Then, it compiles all of the data onto a single platform. Through a “single point of view,” a SIEM gives security teams more visibility into what’s occurring with all the components of the IT environment.

Automation is used by technicians to compare the data in the SIEM to different pre-made security rules. They can easily sort through all the “white noise” in these numerous data sources, which range from web servers to hypervisors, to find actual events that may be taken action on.

Since it enhances threat detection, the SIEM plays a crucial role in an organization’s IT stack. If a bad actor has managed to get past your perimeter defense, you can find out using a SIEM extremely quickly and respond appropriately.

Following are some use cases for SIEM technology:

At TSAROLABS we will either use a SIEM platform or collaborate with a TSP which offers SIEM capabilities as part of its cybersecurity offerings if it wants complete insight into your whole IT infrastructure.

Implement strategic detection: SIEM solutions of today can offer real-time visibility into security threats affecting network devices, systems, applications, and services, such as malware or suspicious network traffic. Security teams can prioritize the reaction to any warnings pertaining to the organization’s most important IT assets by using SIEM technology to stay focused on them.

Evaluate event data: Security teams may utilize SIEMs to examine event data in real-time, which improves their capacity to identify potential risks, such as advanced threats and targeted assaults, early on. Additionally, teams may hunt proactively for risks across the entire business with the “single pane of glass” perspective a SIEM offers, moving away from a reactive approach to cybersecurity.

Enhance logs: Event logs from firewalls, web filters, endpoint solutions, other devices including routers, and applications provide a plethora of information regarding potential risks. But, in order to be understood, they must be enriched, or given more context. Enriching a log of IP addresses with pertinent geolocation information for those addresses is an illustration of this approach. By integrating with other systems via APIs, a top SIEM platform can gather and correlate event and non-event data for enriching logs.

Meet compliance requirements: Businesses may more easily comply with regulations like the Payment Card Industry Data Security Standard and the Health Insurance Portability and Accountability Act (HIPAA) thanks to real-time correlation and analysis of data, data preservation, and report automation (PCI DSS).

Accept data from a variety of network sources: A SIEM gives security teams a much clearer picture of what their various security tools are “seeing” and reacting to because it provides visibility into event data through a single pane of glass and has access to a variety of data sources in an organization’s IT ecosystem. They gain deeper understanding of prospective threats as well as their gravity and network targets as a result.

Current EDR solutions are cloud-based and employ machine learning (ML) and artificial intelligence (AI) for threat identification and behavioral analysis. By diagnosing faulty source processes and system settings, they may swiftly locate the core causes of harmful actions by tracking down every running process and mapping it to malicious behavior.  The most effective EDR solutions can also identify malware and pathogen variations.

When an AI-driven EDR platform detects a threat, it can automatically take action to stop, get rid of, or contain the threat while also alerting security personnel so they can look into it further, if necessary. Modern EDR platforms also include forensics and analytics capabilities, enabling security teams to investigate flagged threats and even conduct threat hunting to look for unusual activity.

Modern cloud-based EDR tools are simple to manage, keep up to date, and interface with other systems. Endpoints are constantly under attack from a variety of threats that change frequently and range in severity, therefore many businesses choose to outsource the process of triaging EDR alerts and remediation to a SOC provider rather than burdening their IT staff or adding more security talent.

So, What is EDR technology and how would you use it?

Endpoint detection and response (EDR) solutions are endpoint-focused security technology, as their name suggests. Endpoints effectively acted as network gateways. These include hardware devices that are vulnerable, such as servers, desktops, smartphones, and Internet of Things (IoT) devices. Malicious actors continuously target endpoints in an effort to infiltrate the network.

EDR technology is not new, similar to SIEM technology, even if the phrase “endpoint detection and response” was only created recently. Like SIEM, EDR technology can play a crucial role in an organization’s security technology stack. Nevertheless, unlike SIEM technologies, EDR solutions do not examine the entire network. An EDR system tracks and gathers information regarding endpoint activity, then analyses it to determine whether or not the activity is normal.

Many EDR systems are agent-based, which means that they need software or sensors installed on endpoint devices in order to be able to monitor and collect data. EDR tools’ ability to provide sophisticated and thorough threat detection and response is made possible by this software.

Following are some use cases for EDR technology:

Vendor-driven analysis has the following advantages: An EDR platform can gather data from endpoints and send it back to the vendor for analysis. The vendor will block the threat and issue an alert if the data is found to be dangerous. Typically, security administrators can monitor these notifications in the EDR solution’s dashboard and choose how to react. Crucially, vendors may also detect false positives, saving security teams’ time from chasing after ineffective threats.

Control and see how devices are used: Modern EDR platforms enable businesses to regulate the information that USB and Bluetooth-enabled devices linked to their networks can access. While those devices are in use in the IT environment, they can also keep an eye on how they are being utilized.

Use rollback capabilities: A contemporary EDR tool can offer comprehensive device visibility. Additionally, they may immediately roll back files to earlier safe versions in the case of a threat by monitoring modifications to the devices and restoring them to a low-risk condition. Rollbacks repair the harm that threats like ransomware assaults cause to endpoints.

Quickly analyze endpoint data: Security personnel may immediately look up data gathered by the EDR platform to gauge the danger and extent of threats. Also, they are able to look for signs of compromise in the EDR database. They can also instantaneously query endpoints directly.

Contain Threats: Threats can be contained at the endpoint by using EDR tools, which use event and behavior analysis to find threats, whether they include known or unknown vulnerabilities. The EDR platform will halt any processes that are now executing to contain the danger, stop any additional events, and notify the security team if an event is later determined to be suspicious. For quickly evolving attacks like ransomware to be contained, timely action at the endpoint level is essential.

When combined, SIEM and EDR are two technologies that can give enterprises a more thorough understanding of the state of their security. See SIEM and EDR as complimentary controls rather than as alternatives to one another in terms of technology.

They are a crucial component of an organization’s overall security strategy, which also includes a variety of other security controls (technological, physical, and logical), adopting best practices and industry-leading frameworks, putting in place and upholding efficient policies, developing and testing business continuity management plans, offering pertinent end user training, and much more.

A well-designed EDR platform should still beat a SIEM tool in prevention, even though a SIEM solution can cover for situations where threat prevention fails. EDR technology should also make it simpler for security teams to react to events.

Sai ram
Follow on LinkedIn


Need Help?

Please feel free to contact us, we’ll happy to assist you.


Tsaro labs were founded in 2017 and are operating in America, the Middle East, and India. As a company, we provide IT solutions and security against cyber threats. We have successfully made our way to secure top companies listed in the Forbes 100. We are proud to provide complete protection for your data to stay free from any cyber attack.

Get a Consultation

Discover the many ways to enhance your organization security posture with TSARO Labs
Select service*